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Abstract-Local thermal equilibrium refers to the state in which a single temperature can be used to 
describe a beat transfer process in a multiphase system. When this condition occurs, a one-equation model 
can be used and the analysis of the heat transfer process is greatly simplified. In this paper we first develop 
the constraints that must be satisfied in order that the principle of local thermal equilibrium be valid, and 
we then compare these constraints with numerical experiments for transient heat conduction in two-phase 

systems. Reasonable agreement between the estimates and the numerical experiments is obtained. 

INTRODUCTION 

The general problem of conduction and convection 
with heterogeneous and homogeneous thermal sour- 
ces has been explored by Whitaker [l], and in this 
work we present a detailed study of transient heat 
conduction in a two-phase system. In particular we 
illustrate how previously neglected topological effects 
can be included in the analysis in a simple manner. 
The system under consideration is illustrated in Fig. 1 
and the governing equations and boundary conditions 
are given by 

(PC,)~ T == V - &VT,) in the b-phase (1) 

B.C. 1 TO = TO, at the /?-a interface (2) 

B.C. 2 -nsO*kBVTB = -naG-k,VT, 

at the 8-g interface (3) 

aT, 
(PC,)~ at =: V * (k,VT,) in the a-phase (4) 

B.C. 3 T, = F(r, t) at d, (5) 

B.C. 4 T, = S(r, t) at .sl,, (6) 

I.C.1 T, ??= S(r) t = 0 (7) 

I.C.2 T, == 9(r) t = 0. (8) 

The boundary conditions at d, and ~4, are generally 
known only in terms of the average temperature and 
not in terms of the point temperature, thus equations 
(5) and (6) serve as reminders of what we do not know 

about T, and T,. The same can be said of the initial 
conditions given by equations (7) and (8) ; however, 
there are some processes for which one might be able 
to specify the point temperatures at the boundary of 
the macroscopic system and at t = 0. The matter of 
boundary conditions at d, and d,, has been 
explored by Prat [2-4] and by Sahraoui and Kaviany 
[5], and the use of a two-equation model to analyze 
the heat transfer process near a solid surface has been 
studied by Plumb [6]. 

The volume averaged form of equation (1) is given 

by [71 

while the analogous form for the a-phase is expressed 
as 

Here the intrinsic average temperatures are defined by 

(T&O = + 
s 

T,dV (T,)” = $z 
s 

T,dV (11) 
“a “, 

2719 
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NOMENCLATURE 

a" interfacial area per unit volume [m-l] 100 J7 - EaE,ks, a,h, mixed mode, small 
doe area of the entrances and exists of the length scale for the /Ls system [m] 

p-phase at the boundary of the L?- characteristic length for V( T@)@, 
macroscopic region [m’] V( T,)” or V< 0 b-4 

&UC area of the entrances and exits of the L T1 characteristic length for VV( T$, 
a-phase at the boundary of the VV( T,)” or VV( T) [m] 
macroscopic region [m’] L length of experimental system [m] 

A,, = A,,, area of the j-o interface “PC - no8, unit normal vector directed from 
contained within the macroscopic the p-phase toward the o-phase 
region [m*] rl inner radius of Chang’s unit cell [m] 

h, vector that maps V(T) onto T0 12 outer radius of Chang’s unit cell [m] 
[ml t time [s] 

(pc,). specific heat for the cc-phase t* characteristic process time [s] 
[J me3 K-‘1 T, temperature of the a-phase [K] 

(P&a E,(Pc~)~+ E&JC& mixed-mode Tz T, - ( Ta)n, spatial deviation 
specific heat for the p-a system temperature of the a-phase [K] 
[J mm3 K-‘1 (0 E~( Tp)p + q,( T,)“, spatial average 

(PX E~(Pc,)~+E~(Pc,),, volume averaged temperature of the p-a system [K] 
heat capacity [J rnT3 K-‘1 Fa (T,)‘- (T), large-scale spatial 

CPU tortuosity tensor associated with the deviation temperature for the a-phase [K] 
temperature difference, ( TB)B - (T,)” -y_ local averaging volume [m”] 
[w m-l K-‘1 V, volume of the a-phase or cl-region 

H height of experimental system [m] contained within the averaging volume 
h heat transfer coefficient [W me2 K-r] b9 
I unit tensor. x XL. 
k, thermal conductivity of the b-phase 

[w m-’ K-‘1 
k, thermal conductivity of the g-phase Greek symbols 

[w m-’ Km’] % ,%l(pc,)~,, mixed-mode thermal 

k,u q,k, + Epk,,, mixed-mode thermal diffusivity [m’ s-‘1 
conductivity for the b-0 system 8, volume fraction of the cl-phase [ VJf] 
[w m-’ K-‘1 (0) ((T) - T,)/(T2 - T,), dimensionless 

K er effective thermal conductivity tensor spatial average temperature 
for the one-equation model w m-’ K-‘1 (6)” (<I’,)“- T,)I(Tz-- T,), 

‘0 characteristic length scale for the /J- dimensionless intrinsic average 
phase [m] temperature for the cc-phase. 

1, characteristic length scale for the c- P total mass density [kg m-‘1 
phase [m] r KefftILz(p)C,,, dimensionless time. 

and the spatial deviation temperatures are identified by in terms of the gradient of the spatial average tem- 
the following decompositions perature. 

TB = (TB)p+To T, = (T,)“+Fo. (12) 

If the two intrinsic average temperatures, ( Ts)B and 
<To)“, are suf$ciently close to each other, they can be 
replaced by the spatial average temperature which 
takes the form 

When (T&p and (To)” are not sufjciently close to 
each other, one must proceed to the two-equation 
model which is given by [9] 

/?-phase : %TpY 
Q(PCJB at = V*(K,*V(T,)P 

1 
<I?=7 r 

s 
TdV= E~(T~)~+E~(T~)“. (13) 

+KB,.V(T,)“)-~,~((TB>~-_(T,)‘) (14) 

One can then add equations (9) and (10) to provide 
the basis for a one-equation model in terms of the 
temperature, (T). The final form requires the devel- 
opment of a closure problem [8] so that the spatial 
deviation temperatures, f, and To, can be represented 

u-phase : %T,)” 
Ec(PCp)o - at 

= V - (Keg * V( T+# 

+K,.V(T,)“)-~,~((T,)“-(TB)~). (15) 

The use of equations (14) and (15) is simplified by the 
following reciprocity relation ; 
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K,, = K,, (16) 

however, determination of the four transport 
coefficients represents a formidable task and this pro- 
vides considerable: motivation for the use of a one- 
equation model whenever possible. Development of 
the two-equation model and its domain of validity is 
documented in [9], and higher order estimates of the 
macroscopic interphase heat flux have been proposed 
in [lo]. 

Localgradient equilibrium 
The first simplification that can be made in terms 

of equations (14) and (15) occurs when the gradients, 
V( TB)B and V( TO)“, are sufficiently close so that they 
can be set equal to each other in the separate transport 
equations. We refer to this condition as localgradient 
equilibrium and it leads to a two-equation model of 
the form 

P-phase: 

%T&@ 
Es@& - = at V * [(Kpp +K,) * V<T,#l 

-avN<T~>B-(T,)o) (17) 

a-phase : 

This model requires the determination of two con- 
ductivity tensors and the volumetric heat transfer 
coefficient, a,h. The experimental determination of 
these three coefficients represents a challenging exper- 
imental problem, t:hus one is still motivated to make 
use of the condition of local thermal equilibrium 
whenever possible. 

Local thermal equilibrium 
When (Ta)B and (T,)” can be set equal to the 

spatial average temperature defined by equation (13), 
one can add equations (17) and (18) to obtain the 
one-equation model. We express this result as 

(&C/g = V.&,*V(T)) (19) 

in which we have used the following definitions 

<P)Cp = q?(PCp)B+cAPCp)o (20) 

K,, := K,,+2K,,+K,. (21) 

In order to apply equation (19) with confidence, one 
needs to know what is meant by the phrase, (T# and 
(TO)” are sufJicient(y close, and in the next section we 
will develop constraints that provide meaning to this 
phrase. 

LOCAL THERMAL EQUILIBRIUM 

If one believes that ( T8)8 = (T,)” is a valid 
approximation, it is prudent to propose decompo- 
sitions of the form 

(Ts>B = (T>+$, (To)” = <T)+Fc (22) 

and then identify the conditions for which FP and p0 
are negligible. This requires that we substitute equa- 
tions (22) into equations (9) and (10) and add the 
results to obtain 

-V * (+kJ$) -V . (&,k,,VpJ 
I 

. (23) 

When the last four terms in this volume averaged 
transport equation are negligible, one need only 
develop the closure problem for FP and F0 in order to 
arrive at the one-equation model given by equation 
(19). From the decompositions given by equations 
(22), we can deduce that 

E& = -E,f< = E~E~((T~)~-(T~)“) (24) 

and if we are willing to ignore variations in the volume 
fractions, E@ and E,, we can use this result to express 
equation (23) as 

(P>C, y 

= V * (zBkS +E,k,)V( T) 

- 
1 
Ej+,[(PC,)p- (PC&71 ; ((TflY 

-(T,)“)-V.[&~E,(~~--IC,)V((TB)~-_(T,)~)I 1 
(25) 

The process of discarding the last four terms in equa- 
tion (25) is not a trivial matter for there is more than 
one way in which the Level II restrictions [ 1 l] can be 
arranged. Since the left hand side of equation (25) will 
be zero for a steady-state process, it seems wise to 
center our attention on the conductive terms. When 
local thermal equilibrium is valid we know that [ 121 

FP = FC at the /Pa interface (26) 
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and we also know that the spatial deviation tem- 
perature can be represented by 

FD = b,.V(T). (27) 

This allows us to approximate the conductive terms 
by 

s n,,TOdA x K,,*V(T) (28) 
40 

in which K, is the one-equation model effective ther- 
mal conductivity tensor defined by 

K,r, = (e&s + e&,)I + 
(kp -kc) 

Y 
i 

n,b, dA. 
AP. 

(29) 

We now make use of equation (28) to simplify equa- 
tion (25) by imposing the following two restrictions 

<< V . [Kerr - V(T)] (30) 

v.[&~&,(k~-k,)V(<Tg)~-(T~)~)l 
<< V.[K,,.V(T)]. (31) 

In the original analysis of this problem [ 11, the effective 
conductivity tensor in equations (30) and (31) was 
replaced with (cska + eOk,)I ; however, the approxi- 
mation indicated by equation (28) certainly provides 
a more reliable approach since Keff can differ greatly 
from (Eak, + c,k,)I for certain topological conditions. 

To obtain useful forms of equations (30) and (31), 
we estimate the time and space derivatives of (TB)O 
and ( T6)c according to 

(32) 

v(( ~~)fl_(<~)~) = 0 A(‘TD’;-(Tu)“) 
T 1 

(33) 

in which t* is a characteristic process time and L, is a 
characteristic length associated with changes in the 
volume averaged temperature. Since the temperature 
difference (T#- ( Tb)O represents a deoiution, as 
indicated by equations (22), we can approximate the 
change in this difference with the difference itself. This 
leads to the estimates 

(34) 

v(( T&b _ (T,)“) = 0 ((Tfl)D;cT~)u) 
1 

(35) 

and the derivatives of the spatial average temperature 
are estimated in an analogous manner 

. 
(37) 

Here we think of L,, as the characteristic length 
associated with changes in the gradient of the volume 
averaged temperature, and if the gradient is constant 
the form of equation (37) indicates that Lr, is infinite. 
This situation occurs when the heat conduction pro- 
cess is steady and one-dimensional. When the esti- 
mates given by equations (34)-(37) are used in equa- 
tions (30) and (31) we obtain the following two 
restrictions associated with the condition of local ther- 
mal equilibrium 

&BE,[(PC~)B-((PC~)~I~IL~ <Ta>‘-<To>” 
Keet* *CT) > 

<< 1 

(38) 

q+&-ko) <TB>~-(T~>” 
Ken *CT) > 

<< ,, 
(39) 

For many systems of practical importance, the physi- 
cal parameters and the length and time-scales will be 
such that 

Under these circumstances, the condition of local ther- 
mal equilibrium will be dominated by the quantity 
(( T#-- (T,)“)/A( T), and it is our ability to estimate 
this quantity that allows us to determine when local 
thermal equilibrium is valid and when it is not. 

ESTIMATION OF THE TEMPERATURE 
DIFFERENCE 

The best estimate of the temperature difference, 
<T,#-(T,Y, would be based on the governing 
differential equation and boundary conditions for this 
field. The general form of the governing equation for 
( Tp)B - ( T,)” is quite complicated ; however, if one 
ignores variations in the volume fractions, ca and a,, 
one can subtract equation (10) from equation (9) to 
eventually obtain [l] 

M&B ++@c,M $ ((Td’ 

- ( ToY) -v * [(E&s + q&,)V(( T,b’ - < T,Y’)l 
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(42) 

Here we can see the beginnings of a transport equation 
for (T#- (T,)” with the accumulation and con- 
duction terms on I:he left hand side, and the so-called 
source terms involving (T) on the right-hand side. In 
order for this result to be useful, we require that it 
contains only temls involving (T# - (TO)= or (T). 
In the original treatment of this problem, the integrals 
containing Ffi and F0 were discarded on the basis that 
they are the same order of magnitude as the term 
(kD-k,)V(T). While this is usually true, these inte- 
grals contain important topological information and 
this is lost if thesle terms are discarded. A complete 
accounting of the integrals containing Tfl and F0 takes 
one back to the two-equation model given by equa- 
tions (14) and (I 5) ; however, we can develop an 
approximate solution for these integrals with only a 
modest effort and this is done later in this paper. 

On the basis of equations (26) and (27) we can 
express equation (42) as 

KT) = - [(PCp)B - W,M - at +” (k, --kc)1 

(43) 

in which we have introduced the mixed-mode par- 
ameters defined by 

(PC,)S~ = a&& +e&cp)o k,, = 0, +s&r. 

(44) 

The interfacial heat flux can be expressed as 

1 
- 

s -tr A# 
npG * ksVTp dA = -a,h(( Ts)p - (T,)“) 

(I 

(45) 

and in subsequent paragraphs we show how the heat 
transfer coefficient can be determined by the solution 
of a closure problem that is similar to the one used to 
determine the vector b,. In both cases we will make 
use of the work of Chang [13, 141 to develop analytic 
solutions that are comparable to those presented by 
Maxwell [15] and Rayleigh [16] for one-equation 
models of heat conduction and diffusion. 

Use of equation (45) in equation (43) leads to the 
governing differential equation for ( Tp)B- ( TO)” 
given by 

@c,),~((T~)P-(T~)u)-V.[kp,V((r,)a-(T~)u)l 

+(&~&,)-‘a,h((Tg)~-_(T,)“) (46) 

+V* (kfl-k,)[I+C,,].V(T)}. 
1 

Here the second order tensor, C,,, is defined by 

(47) 

and we refer to C,, as the tortuosity tensor. We are 
assured that the right hand side of equation (46) is 
zero when the physical properties of the two phases 
are equal since the vector b, is directly proportional 
to (kp-k,). 

At this point we are ready to use equation (46) to 
develop an estimate of ( TB)B- (T,)” in terms of the 
characteristic change in the spatial average tempera- 
ture, A(T). We make use of the estimates indicated 
by equations (34)-(37) in order to express the left 
hand side of equation (46) as 

c r 
accumulation conduction exchkge J 

x ((T&-<TJ’). (48) 

Our typical estimate of the right-hand side of equation 
(47) is given by 

+o (k,-kJ(l+W 
[ 

LT1-h II 
*(T) (49) 

in which C,, is some suitable norm of C,,. In general, 
the estimates given by equations (34) through (37) do 
not take the sign of the individual terms into account, 
and this adds a degree of uncertainty to the right-hand 
side of equations (48) and (49) when the terms are the 
same order of magnitude. For equation (49) we can 
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develop an improved estimate on the basis of equation 
(19) since the one-equation model allows us to con- 
clude that a(T)/at and VV(T) have the same sign. 
This permits us to take the sign into account in the 
construction of our estimates and we do this by 
expressing equation (49) as 

-0 (b-kJ(l+W 
[ LTlLT 11 

A(T) (5o) 

The signs of the terms on the right-hand side of equa- 
tion (48) also poses a problem and we will deal with 
this matter later. We can now substitute equations 
(48) and (50) into equation (46) to obtain 

<Tidp-<T,)” = o & * 
A(T) 0 L 

1 

conduction accumulation 

Here we have defined the mixed-mode thermal diffu- 
sivity as 

(52) 

and the mixed-mode, small length scale is given by 

For simplicity we have replaced LT, & with L*, and 
one must remember that these two length scales will 
depend on time as indicated by equation (40). It is of 
some importance to note that Lrr will be injinite for 
steady, one-dimensional (1 D) conduction processes, 
and for these conditions equation (51) indicates that 
(To)@ - (T,)” will be zero. This means that local ther- 
mal equilibrium is always valid for steady, 1D heat 
conduction. 

For many transient processes, we expect that 

((PCda - (PCd.)L2 = O(1) 

kpot* 

and for many systems of practical importance we 
expect that 

averaging 
volume YY 

Fig. 1. Macroscopic region and averaging volume for a two- 
phase system. 

(k-kAl+C,,) 
k,, 1 

= o(1) 

(55) 

Under these circumstances the term, (Z,,/L)*, is going 
to control the estimate given by equation (51) and will 
thus control the condition of local thermal equi- 
librium. 

Earlier we pointed out that information about a 
field, such as (T&O - (T,)“, was best obtained by an 
examination of the governing differential equation, 
the boundary conditions, and the initial condition. 
However, the estimate of ( Tb)8 - (T,)“given by equa- 
tion (51) is based only on the governing differential 
equation and thus must be used with some care. 

DETERMINATION OF THE TEMPERATURE 

DIFFERENCE 

Because of the importance of equation (5 l), in both 
this study and in subsequent studies of increasing com- 
plex heat transfer processes, it is important to compare 
that estimate with experiments. Some laboratory 
values of ( Ts)B - (To)” are available [l-3] ; however, 
more details can be obtained from the numerical 
experiments that have been carried out by Quintard 
and Whitaker [9] and we will use those results to 
test the reliability of equation (51). The numerical 
experiments consisted of transient, 1D (in the volume 
averaged sense) experiments for the nodular and 
stratified systems shown in Figs. 2 and 3. 

Two numerical experiments were performed on the 
nodular system illustrated in Fig. 2 and one exper- 
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Unit cell 

-1,-----A 
Fig. 2. Two-dimensional nodular system. 

iment was performed on the stratified system illus- 
trated in Fig. 3. These involved the solution of the 
boundary value problem corresponding to equations 
(l)-(4) and the f&owing initial and boundary con- 
ditions 

B.C. 3 TB=T, atx=O; T,=T, atx=L, 

(56) 

Nodular system 

B.C. 4 j-VT,=0 aty=O andy=H. 

(57) 

X = x/L0 z = K,,t/L,2(p)C, (63) 

and the computed profiles were compared with those 
obtained by solution of both the one-equation and 
two-equation models presented in the first part of this 
paper. A little thought will indicate that 

(@&B-((0,)~ = (TBy<-Ty (W 

thus the numerical results of Quintard and Whitaker 
[9] can be used to test the estimate given by equation 
(5 1). To carry out that comparison, it is convenient to 
express equation (51) in the following dimensionless 

Stratified svstem 
form 

< _ 

B.C. 4 j.VT,=O aty=O 

B.C. 4” 

I.C. 

j*VT,=O aty=H 

T, = T, = T, at t = 0. 

(59) 

(60) 

The numerical results were used to produce dimen- 
sionless values of the volume average temperatures 
defined by 

(@, 
B 

)B = (T2- TI 
T2 - Tr 

<@, 
n 

>” = (Tu)“--Tl 
T2-T, (62) 

These numerical values provided profiles of (OP)@ 
and (0,)” as functions of X and r which are defined 
as 

exchange ---v-’ 
conduction 

(65) 
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Fig. 3. Stratified system. 

Here we have been careful to note that LrI and LT are 
functions of time, and both these macroscopic length 
scales have been represented by L(t). 

PARAMETER ESTIMATION 

In order to compare equation (65) with the numeri- 
cal experiments associated with the system shown in 
Fig. 2, we need to determine C,, and the mixed-mode 
small length scale, lPc. To determine the former we 
recall equation (47) 

c,, = @,A- ’ km 
(k, - k,)V J Ag. nSdba dA (66) 

and draw upon the work of Ochoa-Tapia et al. [17] 
in order to determine the vector b, by the following 
closure problem 

Conductivity closure problem 

B.C. 1 b, = 0 r = r2 

Fig. 4. Chang’s unit cell. 

of equations (67) leads to 

(67a) i* {~/ABOnP&dd)*i = - 2~$k&-~~,) 

(68) 
V2b, = 0 r, <r<r, (67b) and when this result is used with equation (66) we 

obtain 

B.C. 2 

B.C. 3 

b, = b, r = r, 

- ngc - k,Vb, = - nsb * k,Vb, 

(67~) 

-tn,,(kp-k,) r = r1 (67d) 

V’b,=O O<r<r,. (67e) 

This closure problem is associated with the unit cell 
illustrated in Fig. 4, and it was Chang [13, 141 who 
first showed that the solution led to Maxwell’s [15] 
result for a 3D array of spheres and Rayleigh’s [16] 
result for a 2D array of cylinders. Since the array of 
cylinders (Fig. 1) is transversely isotropic, the solution 

(69) 

If k, >> k,, the result produced by equation (69) is 
much different than the result for k, >> k, and this 
difference can only be captured by retaining the inte- 
grals involving fP and p0 in equation (42). 

In order to determine the heat transfer coefficient, 
and therefore lb0 as defined by equation (53), we make 
use of the closure problem developed by Quintard and 
Whitaker [9] along with Chang’s unit cell. This leads 
to 
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Heat transfer coejficient closure problem 

k,V2s,, = Ei’a,h r, < r < r2 

B.C.2 sir = s,+l r = r, 

(704 

(7Ob) 

B.C. 3 nsc - kBVs,, = nB,, * k,Vs, r = rl (7Oc) 

k,V’s,, = -E;‘avh 0 < r < r,. (704 

To complete the problem statement for the sP and s,- 
fields, we require that sg and s, be continuous, and we 
impose the condition of radial symmetry on s8 and s,, 
i.e. 

sp = so(r) s, = s,(r). (704 

This latter condition replaces the condition of period- 
icity that one uses with spatially periodic models. 

If a,h were known, the boundary value problem 
given by equations (70) would determine sp and s, to 
within a single arbitrary constant. Both this arbitrary 
constant and a,h (can be determined by imposing the 
following constraints on the sg and s,-fields 

(s,#j = 0 (s,)O = 0. (71) 

The details concerning this type of analysis are given 
by Quintard and Whitaker [9] and here we simply 
note that the dimensionless form of the heat transfer 
coefficient for a cylindrical system is given by 

a,hr: S&j -=_ 
k, [&,,(R+1)-31&g-41n(J(&,)) 

(72) 

in which the parameter R is defined as 

(73) 

In order to develop a correspondence with the spa- 
tially periodic model shown in Fig. 2 and Chang’s unit 
cell, we require th.at the volume fraction and the area 
per unit volume bl: equal, i.e. 

EBlChing = Eg a, I chang = 4. (74) 

This leads to the following relation between r2 and 1, 

nrz = P P (75) 

and we have illustrated this relation in Fig. 5 where 
we have superimposed Chang’s unit cell on the unit 
cell for a spatially periodic system. When equation 
(75) is used with equation (74) we obtain the following 
representation for the dimensionless heat transfer 
coefficient 

a,hlj 871~; 

kP MR+1) -3l~+lnL/(d) 
array ofcylinders. (76) 

This result is crucial for our estimation of the mixed- 
mode, small length-scale defined by equation (53). 
For the purpose of comparing theory with laboratory 
experiments, the solution of the spherical version of 
equations (70) is useful and it is given by 

Fig. 5. Comparison of Chang’s unit cell with a spatially 
periodic model. 

a,hlj 
-= 

40a(U2 + c( + l)K 

k, (1+5~)+a(2+K)+(a~+2a~+3a~)(l-K) 

array of spheres. (77) 

Here we have employed the following nomenclature 

M = (1 -E~)“~ K = k,/k$ (78) 

in order to simplify the expression for the dimen- 
sionless heat transfer coefficient. 

It is of some interest to compare the solution for 
Chang’s unit cell with the results obtained by Quintard 
and Whitaker [9] for a spatially periodic system, and 
the comparison for a wide range of conductivity ratios 
is presented in Figs. 6(a) and (b) for cubic arrays of 
both cylinders and spheres. For the arrays of cylinders 
(2D), we see good agreement between the analytical 
solution for Chang’s unit cell and the numerical solu- 
tion for the spatially periodic model. For the arrays 
of spheres (3D), the agreement is less attractive. At 
low values of the conductivity ratio, the 3D results are 
in good agreement, while at high values of this ratio 
Chang’s unit cell predicts significantly higher values 
than the spatially periodic model. One should be care- 
ful to note that the logarithmic scale used in Figs. 6 
tends to hide the differences between the two theor- 
etical results, and in Fig. 7 we have shown a more 
detailed comparison for the 2D results. There we see 
significant differences at the lower values of the 
porosity, and this is to be expected. 

While the comparison between Chang’s unit cell 
and the spatially periodic model is attractive, it does 
not represent a comparison between theory and Zab- 
oratory experiments. The single reliable experimental 
measurement of the heat transfer coefficient for con- 
ductive transport, of which we are aware, is found in 
the work of Grangeot [ 181. A brief description of the 
Grangeot’s studies of heat transfer in hexagonally 
packed beds of spheres is available in Grangeot et al. [19]. 
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periodic array of spheres. 
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Fig. 7. Dimensionless heat transfer coefficient as a function of the porosity. 

Given the paralmeters for the nylon-water system 
studied by Grangeot [ 181 

k 
p = 0.46 
k, 

sg = 0.396 

we can use equation (77) to find 

a,h”;; 
k 

= 13.3 Chang’s unit cell. (79) 
B theory 

This is in reasonably good agreement with the 3D 
spatially periodic model [ 191 result given by 

a,hli 

k 
= 11.2 spatially periodic model (80) 

B theory 

and both these results are in reasonable agreement 
with the experimental value for hexagonally packed 
nylon spheres and water [ 191. 

(81) 

At this point we are reasonably confident that we can 
determine the parameters that appear in equation (65) 
and we are ready to compare the theory with numeri- 
cal experiments. 

COMPARISON WIITH NUMERICAL EXPERIMENTS 

Numerical experiment No. 1 
Two numerical experiments were carried out for the 

system shown in Fig. 2, and the parameters for the 
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first experiment are listed in Table 1. These parameters 
are consistent with a system composed of glass beads 
and air except for the porosity of the p-phase which 
should be on the order of 0.35SO.40. The macroscopic 
properties have been calculated both by the solution 
of a spatially periodic closure problem [9] and by 
the use of Chang’s unit cell. The quantity (p)C, is 
calculated directly by equation (20). 
In Fig. 8 we have shown temperature profiles at 
dimensionless times of 0.0038 and 0.0345. In thinking 
about these results, one should remember that the 
time has been scaled so that 7 will be on the order of 
one when steady state is reached. We express this idea 
as 

r = O(1) at steady state (82) 

to make it clear that the comparisons shown in Fig. 8 
are for relatively short times. The solid lines in Fig. 8 
represent values of the spatial average temperature 
determined by equation (19), and the dimensionless 
temperature is defined by 

The values obtained directly from the numerical 
experiments are shown by the interrupted lines in Fig. 
8, and the values of (O# and (0,)” were determined 
by equations (61) and (62) and the solution of the 
boundary value problem given by equations (6) 
through (4) and (56)-(60). For both times indicated 
in Fig. 8, the numerical experiments indicate that 

(O# z (0,)” x (0). (84) 

The experimental values begin at X = 0.05 since this 
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Table 1. Parameters for experiment No. 1 (array of cylinders) 

Unit cell 

Physical properties k, [W m-’ Km’] k, [W mm’K-l] (P& [J m --3 K-‘1 (pc,). [J me3 Km’] 
0.26 0.50 1202 1.7 X 106 

Macroscopic properties K&, 
Spatially periodic 2.11 
Chang’s unit cell 2.04 

(p)C, [Jm-‘K-l] 
0.646 x lo6 

aVh$lkp 
25.8 

0.646 x lo6 29.0 

+ C,. 

0.032 

0.9 

0.8 

0.7 

0.6 

(0) 0.5 

a4 

0.3 

02 

0.1 

0 

0 a1 02 0.3 0.4 0.5 0.6 iI a8 0.9 1 

X 
Fig. 8. Comparison of numerical experiments with the one-equation model (experiment No. 1 of Quintard 

and Whitaker). 

represents the centroid of the first cell in the series, 
and the values of (O,)fl and (0,)” contain small-scale 
fluctuations. This characteristic of volume averaged 
quantities has been investigated in detail by Quintard 
and Whitaker [20-241 who demonstrated that a 
double, or cellular average, should be used in the 
analysis of spatially periodic systems. If the exper- 
imental results shown in Fig. 8 were averaged a second 
time, it is clear that the difference between the one- 
equation model and the numerical experiments would 
be negligible. We could describe the results shown in 
Fig. 8 by the inequality 

(@&((o,)~ = (+-Ty)” << 1 (85) 

and we are now ready to examine equation (65) to see 
how well our estimate compares with the experimental 
results. 

For the shortest time illustrated in Fig. 8, we have, 

L(t) - 21, (86) 

and when this result is used in equation (66) we find 

CT,?-CT,>” = 
A(T) 

O(5) - O(O.05) 
1 + O(O.025) + O(O.07)) ’ (87) 

At this point we should remember the discussion in 
which we indicated that the signs of the two terms in 
the numerator of the right-hand side of equation (65) 
are known (one relative to the other). This allows us 
to subtract 0.05 from 5; however, in this particular 
case this will not change our estimate of the tem- 
perature difference. The physics associated with the 
terms in the denominator of equation (87) are ident- 
ified in equation (65), and a little thought will indicate 
that it is generally more difficult to determine the sign 
of these terms. In this particular case there is a single 
dominant term and that allows us to write equation 
(87) as 

(TL#-<T~,>” 
A(T) 

*{o(5)}. (88) 
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We have already determined that (IsO/L(t))* z 0.025 
and we can express equation (88) as 

(TsY-CT,>” 
MT> 

= O(O.l) z = 0.0038 theory. 

(89) 

In this case equation (65) clearly over-estimates the 
temperature difference since the numerical exper- 
iments would lead us to conclude that 

(TP>~-<T,>” 
A(T) 

<< 1 z = 0.0038 experiment. 

(90) 

The reason behind the difference between equations 
(89) and (90) might well be the failure of equation 
(65) to take into account the influence of the initial 
condition which would require that 

w(;ycJ” = 0 z = 0. (91) 

Turning our attention to the second set of profiles in 
Fig. 8, we make use of 

L(t) - 6ZD z = 0.0345 (92) 

so that equation (65) provides 

<T,J’-(T~>” 
A(T) 

O(5) - O(O.05) 
1+0(0.003) +0(0.008) . (93) 

Clearly this leads us to 

(TP>~-U’~>” 
A(T) 

2{o(5)} (94) 

and since the ratio of length scales is given by 
(&0/L(Q) 2 x 0.003, we arrive at an estimate which 
seems to be in reasonable agreement with the exper- 
imental results indicated in Fig. 8. 

(Tp>B-<To>” This estimate is too large by about a factor of 10 since 

A(T) 
== O(O.015) z = 0.0345 theory. the results shown in Fig. 9 suggest that 

(95) 

One could argue that this estimate is also too large by 
a factor of ten or more ; however, at this point it hardly 
matters since the use of this estimate in equations (38) 
and (39) will lead us to conclude that the condition of 
local thermal equilibrium is satisfied and that is 
exactly the conclusion that one would reach on the 
basis of the results shown in Fig. 8. 

Numerical experiment No. 2 
The parameters for the second numerical exper- 

iment associated with the nodular system shown in 

Fig. 2 are listed in Table 2. In this case the heat 
capacities for the two phases are equal and the thermal 
conductivities differ by a factor of 100. The results for 
two times are shown in Fig. 9 where the numerical 
experiments are compared with the two-equation 
model given by equations (17) and (18). The tem- 
perature profiles clearly indicate that local thermal 
equilibrium is not established for the times shown in 
Fig. 9 and the numerical experiments support the val- 
idity of the two-equation model. 

For the temperature profile associated with the 
shortest time illustrated in Fig. 9, we have 

L(t) - 21, (96) 

and equation (65) provides the following estimate 

(97) 

In this case we are confronted with terms in the 
denominator that are the same order of magnitude, 
and the sign of these terms now becomes crucial. In 
this particular case, one can refer to equations (45) 
and (46), and the numerical results shown in Fig. 9, 
to deduce that the accumulation and interfacial flux 
terms are of opposite sign. To be clear about this, we 
note that the accumulation and exchange terms are 
constrained in the following manner 

(~c,),~((T,)~-(r,)‘) < 0 

and (EB&,)~la,h((Tg)B-(T,,)“) > 0. (98) 

This means that equation (98) takes the form 

(Ts>~-<T~>” 
A(T) (99) 

and we estimate the temperature difference as 

<T$-(To>” 
A(T) 

= 0(1.8) r = 0.00437 theory. 

(100) 

<Ti#‘-<To>” 
A(T) 

= 0(0.2) ‘t = 0.00437 experiment. 

(101) 
Even though we can deduce the sign of the dominant 
terms in the denominator on the right hand side of 
equation (97), we cannot expect to obtain reasonable 
estimates when we are forced to use the difference 
between two terms that are the same order of magni- 
tude. In order to be very clear about this point, we 
note that we have used 1 + O(O.1) -O(l) = O(O.1) 
with equation (97) in order to arrive at the result given 
by equation (100). 
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Table 2. Parameters for experiment No. 2 (array of cylinders) 

Unit cell 
0::2 

blL0 
0.10 

Physical properties k, [w mm’K-‘1 
1.0 

k, [w m-‘K-‘1 
0.01 

Macroscopic properties 
Spatially periodic 
Chang’s unit cell 

L&p (p)C, [Jme3 K-‘1 a&lks 
0.437 1.0 x lo6 0.25 
2.04 1.0x lo6 0.25 

+ C,, 

0.72 

For the second set of profiles shown in Fig. 9, we were performed on one-half of a unit cell in order to 
have take advantage of the planes of symmetry and this 

L(t) - 4zjj (102) 
means that the distance H is related to the charac- 
teristic lengths for the /3 and u-phases by 

and equation (65) provides the estimate 
2H = lo + 1, stratified system. (108) 

(T!3Y-(Tb>” = O 0(1.8) 

A(T) 1 + O(O.02) + O(O.3) 
For the particular case under consideration, i.e. 
sp = E,, we have 

(103) H = 1, = I,. (109) 

Once again we can argue that the accumulation and Two sets of temperature profiles for the stratified sys- 
exchange terms identified in equation (65) are of tern are shown in Fig. 10 where the numerical exper- 
opposite signs and under these circumstances equa- iments are compared with the two-equation model. 
tion (103) reduces to Here we see that local thermal equilibrium is not estab- 

<T&‘-<T,>” 
lished even at relatively long times. For the smallest 

A(T) 
(104) time illustrated in Fig. 10, we have 

L(t) - 41, (110) 
In this case the theory provides 

and from eouation (65) we have the estimate . I  

CT&‘-(To>” 
A(T) 

= O(O.05) r = 0.0131 theory O(2) 
1+0(0.13)+0(1.4) 

(105) 

while the experiments indicate that (111) 

(T8)p-(Tu)” = O(O.10) 
In this case, the numerical result shown in Fig. 10 

z = 0.013 1 experiment. indicate that the accumulation and interfacial flux 
A(T) terms are again of opposite sign 

(106) 
Here we find that the estimate is within a factor of 
two of the experimental result and in general one 
could not expect to do better than this. 

This allows us to write 
Numerical experiment No. 3 

The third numerical experiment was carried out 1+0(0.13)+0(1.4) = l-0(1.4) = O(O.4) 

using the stratified system illustrated in Fig. 3 and the 
parameters for that system are given in Table 3. In 
this case the effective thermal conductivity refers to 
the component parallel to the stratification, and the 
dimensionless heat transfer coefficient is determined 
analytically in terms of the appropriate closure prob- 
lem [25, 261. The result is given by 

dq5 + I>’ 12k, 
=- 

s k,, 
(107) 

It should be noted that the numerical experiments 

(113) 

so that equation (111) takes the form 

(114) 

One must be aware that the calculation indicated by 
equation (113) contains all the uncertainties associ- 
ated with the estimate of the transient term that pro- 
vided 0( 1.4) ; however, it we are willing to use equa- 
tions (113) and (114) we obtain the estimate 
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Fig. 9. Comparison of numerical experiments with the two-equation model (experiment No. 2 of Quintard 
and Whitaker). 

(T&a- (To)” = o(o,6) ~- 

A( 5’) 

r = 0.0152 theory. (115) 

In this case our estimate of the temperature difference 
is larger than that indicated by the results shown in 
Fig. 10 which can be expressed as 

r = 0.0152 experiment. (116) 

For the largest time illustrated in Fig. 10, we have 

L(t) N 91, (117) 
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Table 3. Parameters for experiment No. 3 (stratified system) 

Unit cell 
050 

HI& 
0.10 

Physical properties k, [w m-K’] 
1.0 

k, [w m-K’] (PC,)~ [J m-‘K-l] 
1.7 x lo6 

(PC,). [J mm’Km’] 
100 1.7x lo6 

Macroscopic properties K,,lkp (p)C, [Jm-‘K-l] 
50.5 1.7 x IO6 

a&&k0 
5.94 

+ C,, 
1.0 

(0&a (experiment) 

-------- (Ov)u (experiment) 

. ..------.-.. @,)a (theory) 

------- (ev)” (theory) 

(D&a (experiment) 

-------- (ec)u (experiment) 

-..------.... (@,)a (theory) 

------- (ev)u (theory) 

0.2 - 

7 = 0.1 0.0606 - 

Fig. 10. Comparison of numerical experiments with the two-equation model (experiment No. 3 of Quintard 
and Whitaker). 
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and equation (65) provides 

O(2) 
1 + O(O.026) + O(0.35) . 

(118) 
We again make use of the fact that the sign of the 
accumulation and exchange terms are known in order 
to express this result as 

and this leads to the theoretical result given by 

(Tdp-(To)” _ O(,, 08) 

A< 1”) 

z = 0.0606 theory. (120) 

This provides very attractive agreement with the 
experimental value 

(TL#-(T~)” 
A(T)- = W.1) 

r = 0.0606 experiment (121) 

however, one must remember that there is con- 
siderable uncertai:nty in the use of order of magnitude 
estimates to obtain 

1+0(0.026)+0(0.35) = l-0(0.35) = 0(0.65). 

(122) 

For example, an estimate that indicates something is 
0(0.35) can certainly be interpreted to mean that the 
quantity under consideration could be as small as 
0.035 or as large as 3.5. 

In this test of the estimate given by equation (65) 
for the systems illustrated in Figs. 2 and 3, we have 
had some degree of success ; however, much of this 
was based on the fact that we knew the signs of the 
dominant terms in the transport equation for 
(T# - (T,)“. In more complex applications involv- 
ing multi-dimensional transport with homogeneous 
and heterogeneous thermal sources, it will be difficult 
to associate signs with the estimates of the various 
terms that appeal- in the transport equation for the 
temperature difference. 

CONCLUSIONS 

In this paper we have developed the two constraints 
that must be satisfied in order for local thermal equi- 
librium to be valid for a transient heat conduction 
process in a two-phase system. The current analysis 
represents an improvement over prior studies in that 
the topological effects associated both with the con- 
ductive transport terms and the heat transfer 
coefficient have been taken into account in terms of 
solutions of simple closure problems. 

The analysis rests largely upon reliable estimates of 

and in this paper we have compared a method of 
estimating the temperature difference with numerical 
experiments for nodular and stratified systems. For 
several cases, in which there are significant differences 
in the physical properties, the estimate takes the form 

{o(l- 10)). (123) 

This means that accurate determination of the mixed- 
mode, small length scale, Z@,, is required in order to 
predict when local thermal equilibrium will occur. The 
uncertainty in I,, is dominated by the heat transfer 
coefficient, h, and we have presented a convenient 
analytical representation for this quantity. The ana- 
lytical representation is in reasonably good agreement 
with values obtained from spatially periodic models 
of porous media, and with the single experimental 
value that is currently available. Predicted values of 
the temperature difference, ( Ta)B- ( To)“, are in 
reasonable agreement with experimental values except 
when terms in the transport equation for 
( Ts)8 - (T,)” are the same order of magnitude and 
are of opposite sign. 
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